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Robotic Insertion of Flexible Needle in Deformable
Structures Using Inverse Finite-Element Simulation

Yinoussa Adagolodjo, Laurent Goffin, Michel De Mathelin, and Hadrien Courtecuisse

Abstract—This paper introduces a new approach for the control
of a robotic system interacting with deformable structures. The
method is applied to needle insertion procedures, which are among
the least invasive surgical approaches to access deep internal struc-
tures with sometimes poor access conditions. Yet, during the inser-
tion both tissues and needles deform resulting in a displacement
of targets identified at the planning step and significantly raising
the technical difficulty of these approaches. Robotic assistance may
offer new possibilities to enforce the accuracy of the needle’s posi-
tioning, but the deformation of tissues remains an open problem. In
this paper, we propose a numerical approach where finite-element
(FE) models are used in a close-control robotic loop. We introduce
a complete forward simulation of deformable structures (needle
and environment) and constraint-based interaction models allow-
ing for the simulation of needle insertion and complex nonlinear
phenomena (friction, puncture, and insertion) at a high frequency.
For the control, we numerically derive the so-called Jacobian of the
Simulation using an inverse method. The most original aspect of
this paper lies in the fact that inverse steps are performed in con-
straints space, allowing this way for fast estimation of the Jacobian
(i.e., between 40 and 100 Hz). The method is validated both numer-
ically and experimentally using a flexible needle inserted inside a
deformable foam. We show that the robot is able to follow a given
trajectory, defined during the planning step, taking into account
any occurring deformation of both the needle and the foam during
the insertion; without any need for tracking the needle neither the
target nor the trajectory.

Index Terms—Flexible needle, modeling and finite-element (FE)
simulations, needle steering, robotic needle insertion.

I. INTRODUCTION

N EEDLE-BASED interventions are among the least inva-
sive surgical approaches to access deep internal structures

into organs’ volumes without damaging surrounding tissues.
Unlike traditional open surgery, needle-based approaches only
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affect a localized area around the needle, reducing this way the
occurrence of traumas and risks of complications [1]. Many sur-
gical procedures rely on needles in nowadays clinical routines
(biopsies, local anesthesia, blood sampling, prostate brachyther-
apy, vertebroplasty, etc.). Radiofrequency ablation is another
percutaneous example that uses heat at the tip of a needle to
destroy cancer cells. Such alternative treatments may open new
solutions for unrespectable tumors or metastasis (concerns about
the age of the patient, the extent or localization of the disease).
However, contrary to what one may think, needle-based ap-
proaches can be an exceedingly complex intervention. Indeed,
the effectiveness of the treatment is highly dependent on the
accuracy of the needle positioning (generally required around
few millimeters), which can be particularly challenging when
needles are manipulated from outside the patient with intra-
operative images [X-ray, fluoroscopy or ultrasound (US), etc.]
offering poor visibility of internal structures. Human factors,
organs’ deformations, needle deflection, and image limitations
can be causes of needle misplacement and raise significantly the
technical level necessary to master these surgical acts.

The use of surgical robots has revolutionized the way surgeons
approach minimally invasive surgery. Robots have the potential
to overcome several limitations coming from the human factor:
for instance by filtering operator tremors, scaling the motion of
the user, or adding new degrees of freedom (DoFs) at the tip
of instruments. A rapidly growing number of surgical robots
has been developed and applied to a large panel of surgical
applications [2]. Yet, an important difficulty for needle-based
procedures lies in the fact that both soft tissues and needles
tend to deform as the insertion proceeds in a way that cannot
be described with geometrical approaches. Standard solutions
address the problem of the deformation extracting a set of fea-
tures from per-operative images (also called visual servoing) and
locally adjust the pose/motion of the robot to compensate for
deformations [3]. Nevertheless, visual servoing raises several
limitations, in particular for the needle insertion.

1) Per-operative images usually offer poor visibility of inter-
nal structures (such as a tumor or vessels), and it is very
challenging to extract essential data at a high frequency.
This is especially true for disappearing liver metastases:
due to chemotherapy effects, the shape of tumors may
change or they may become invisible in intraoperative
images, even if the lesions still contain active tumors [4].

2) When large deformations occur the control law of the
robot can be significantly modified, which is extremely
difficult to relate with image-based displacements. For
instance, when the needle is deeply inserted inside the
tissue, the needle shaft becomes completely constrained,
preventing for any lateral motions of the needle.

1552-3098 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Control loop: The robot is controlled by an inverse FE simulation;
itself registered with intraoperative images.

3) Traditional controllers do not have access to any biome-
chanical models capable of predicting the deformation of
organs at a high frequency. Yet, the trajectory taken by the
needle at the beginning of the insertion has a significant
impact on the ability to reach or not the target later.

To overcome these limitations, we introduce a numerical
method allowing performing inverse finite-element (FE) sim-
ulations at a high frequency. We show that it can be used to
control an articulated robot while considering deformations of
structures during needle insertion. Our approach relies on a for-
ward FE simulation of a needle insertion (involving complex
nonlinear phenomena, such as friction, puncture, and needle
constraints). Control commands are then derived from the fol-
lowing two important steps.

A. Corrective Step

As for visual servoing, we extract a set of features from
live images in order to enforce the consistency of the models
with real-data. However, instead of directly steering the nee-
dle toward these features, we first register FE models with the
observations. The advantage of relying on FE models lies in
the fact that it provides a regularization technique to extrapo-
late the displacement field extracted from images. Moreover,
it allows to interpolate the whole volume displacement of the
organs (including internal structures, such as tumors, vessels,
or nonvisible tumors), even if only few landmarks are visible in
the images.

B. Predictive Step

Input commands of the robot are obtained from an optimiza-
tion process based on inverse simulation steps of FE models.
This allows anticipating the behavior of mechanical structures,
in order to adapt input commands much faster than waiting for
a correction from the images. Inverse steps are performed to
numerically derive the so-called Jacobian of the Simulation,
which relates Cartesian displacements of the base of the needle
with displacements of the tip inside the volume, allowing to
compensate, or even induce, necessary deformations to reach a
target.

In this paper, we introduce a closed-control robotic loop (see
Fig. 1). The nonrigid registration process allows maintaining
low deformation errors between FE models and real structures.
An important difficulty concerns the computation time of inverse
steps, especially because the overall system is highly nonlinear,
and the validity domain of the Jacobian is limited to small defor-
mations and remains valid for a small amount of time. In order
to meet computation time constraints necessary for the robotic

control, a generic constraint-based formulation is proposed. In
a quasi-static scenario, we show that a sufficient frame-rate can
be achieved for a stable needle insertion in a deformable en-
vironment, allowing for a total insertion time compatible with
clinical constraints.

II. RELATED WORKS

Although robotic needle insertion has been a subject of con-
siderable interest over the last years, recent surveys [1], [5]–[7]
still highlights the need for control models when dealing with
deformable tissues. In this section, we review the main methods
that have been proposed for accurate robotic needle steering.

A. Needle and Target Tracking

Image-guided techniques extract information (for instance
needle and target positions) from vision sensors. This informa-
tion is used in a closed-control loop to guide the needle tip
toward the target. In [8], Kobayashi et al. track the needle shape
using US images. In [9], Neubach and Shoham estimate flex-
ible needle’s tip position from live US images. The method is
combined with tissue stiffness estimation (from localized tissue
displacements) and applied to the robotic needle insertion inside
soft tissues. Although US is fast, portable, widely available, and
easy to combine with robotic systems, the needle visibility in
US images remains an open problem. In [10], Okazawa et al.
presented two methods to detect the needle in two-dimensional
(2-D) US that specifically address needle curvature.

Image quality of US being limited, other image modali-
ties have been investigated for needle tracking (see [5] for a
survey). For instance, in [11], Seifabadi et al. presented an
MRI-compatible robot for teleoperated bevel-tip needle steer-
ing under real-time MRI guidance. Navab et al. [12] used X-ray
fluoroscopy to align a needle (held by a medical robot) inside
a porcine kidney. Image quality of MRI is often much better,
but the acquisition time is usually slower and it raises several
difficulties to align the images’ plane with the structures.

Alternatively to imaging systems that are often limited by
image quality or acquisition time, other solutions have been
proposed to reconstruct the needle trajectory using optical fibers.
Abayazid et al. [13] used an optical fiber embedded into needle’s
shaft for a direct measurement of the deflection and even for a
3-D reconstruction of the needle shape. In [14] and [15] the
authors used a set of fiber Bragg gratings sensors and general
elastic rod theory to reconstruct the shape of the needle in 3-D
even for large deflection of the needle.

Instead of steering the needle to the tumor, Mallapragada
et al. [16] proposed a method to move the tumor toward the
needle trajectory. The method is used for breast biopsy and
takes as input real-time fluoroscopic images, in which the tumor
is located.

A common limitation of the abovementioned methods lies
in the fact that both the target and the needle must be visible
in online images. Yet, images qualities being most of the time
antagonistic with the acquisition frequency, it limits applications
either to offline insertions or raises significant difficulties on
image-processing algorithms and images localization.

B. Duty-Cycling Approach

Some approaches explore the possibility of changing the cur-
vature of beveled-tip flexible needles. The method named duty-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADAGOLODJO et al.: ROBOTIC INSERTION OF FLEXIBLE NEEDLE IN DEFORMABLE STRUCTURES USING INVERSE FE SIMULATION 3

cycling, consists of spinning the needle along its insertion axis
to add three additional DoFs at the tip of the needle, hence,
allowing the steering of the needle inside the volume during the
insertion. Bernardes et al. [17] developed a robot-assisted ap-
proach for the automatic steering of flexible beveled needles in
percutaneous procedures. The method uses duty-cycled rotation
of the needle to perform insertion with arcs of adjustable cur-
vature. The method is used in a closed-loop imaging feedback
with an intraoperative motion replanning strategies to compen-
sate for system uncertainties and disturbances. In [18], Krupa
presented a duty-cycling robotized system for steering beveled
needles allowing this way for the creation of complex non-
straight trajectories to reach a target and avoid obstacles. Secoli
and Rodriguez y Baena [19] proposed a bioinspired multipart
needle and validated the control strategy by fitting experimen-
tal models. Reed et al. described [20] a robot-assisted needle
steering system using three integrated controllers. They obtain
similar results by applying a stochastic motion planner with
paths replanning for duty-cycling techniques.

All the aforementioned methods share two main limitations.
First, they all rely directly on images to track the needle and
define the target point; either using tomographic reconstruction
(CT, MRI) or live images (echography, fluoroscopy), entailing
many challenges for image features extraction and noise correc-
tion. Second, even if these approaches add new DoFs at the tip
of the needle, the correction of the needle trajectory is always
performed a posteriori (i.e., only when errors are detected in
the images). None of these methods are capable to predict the
behavior of the tissues in order to generate a priori deformations
to reach the target.

C. Simulation, Modeling, and Trajectory Planning

Modeling the interactions between needle and tissue is essen-
tial to predict the behavior of the needle inside tissues. Misra
et al. [21] studied interaction force at the tip of asymmetry bevel-
tip needles to estimate the rupture toughness of the tissues. In
[22], Rucker et al. proposed a closed-loop control system for
an asymmetric-tipped needle. Abayazid et al. [13] proposed
an image-guided control system to steer flexible needles. Both
kinematics and mechanical models are used to predict the de-
flection of the needle model.

Large-scale simulations of needle insertion (including ad-
vanced FE models of needle, tissue, and interactions) have also
received a considerable interest, mainly for the training pur-
pose. Chentanez et al. [23] presented a FE approach based on
the beam’s theory to predict needle deflection. However, the
method is not compatible with real-time computations mainly
due to expensive remeshing steps along the needle shaft. In-
teractive models were proposed in [24]. The method does not
require any remeshing process when the needle goes through
the tissue. In addition, it allows for the simulation of complex
phenomena, such as tissue deformations, needle-tissue friction,
and puncture force.

Based on similar models, several researchers have developed
motion planners for symmetric-tip flexible needles in 3-D tis-
sues [25], [26]. Duindam et al. derived an inverse kinematics
solution to reach a desired position and orientation in 3-D [27].
However, all these methods assumed that the tissue is rigid.
Alterovitz et al. [28] presented trajectory planning algorithms
including probabilistic methods considering uncertainty. The
method was improved in [29] to explicitly consider motion and

uncertainties while guiding the needle to a target in 3-D anatomy.
Hamzé [30] relied on the method proposed in [24] for optimal
trajectory planning for liver surgery. The method takes into ac-
count deformations (breathing, needle deflection, and friction)
to avoid obstacles identified at the planning step.

The main limitation of offline trajectory planning strategies
lies in the fact that some significant changes might occur be-
tween preoperative and intraoperative configurations, and in-
validate the chosen trajectory in a real application. Li et al.
[31] proposed a path planning (and online replanning) approach
for steerable needles based on discrete potential field in 3-D
anatomical structures but the method is not real-time.

D. Kinematic and Mechanical Model-Based Control

DiMaio and Salcudean [32] were among the pioneers to inves-
tigate robotic needles’ steering through soft tissue. They com-
pute numerically the Jacobian matrix from mechanical models,
from which the needle base velocity is derived and used as input
in an open robotic control loop. The method is combined with
trajectory planning strategies: attractive fields drive the needle
toward the desired target, whereas repulsive fields avoid obsta-
cles, but the method is not real-time. Glozman and Salcudean
[33] proposed a real-time steering system that integrates plan-
ning and control in a closed-control loop for dynamic systems. A
mechanical model (springs with different stiffness coefficients
along the needle shaft) was used to simulate the interaction
between the needle and soft tissues.

In order to predict the behavior of structures, more advanced
mechanical models have been used to predict the behavior of the
tissue. In [34], Barbé et al. used a linear Kelvin–Voigt model
to estimate online the forces involved in percutaneous inter-
ventions, but the method is limited to the forces applied in
the direction of the needle. Khadem et al. [35] presented a
mechanics-based model for the simulation of a needle insertion
in soft tissues. Robotic tests are conducted to identify the pa-
rameters of the model, then used to steer the real needle. In [36],
Kobayashi et al. used a nonlinear viscoelastic model calculated
intraoperatively to manipulate a needle while considering organ
deformations. The force upon the needle is measured using a
force sensor and applied to a mechanical model allowing for
the estimation of deformations of the tissue. Nevertheless, no
interaction model between the needle and the tissue is proposed
restricting the method to superficial insertions. The method is
then extended in [8] using an US-guided manipulator combined
with a physics-based model of the liver. After registration, the
biomechanical model provides information of the stress inside
the tissue during the insertion, but this method is limited to 2-D
insertions.

To the best of our knowledge, no robotic solution allows
for generating large deformation and predicting the behavior
of structures in order to guide a robot for automatic needle in-
sertion. One of the main reasons lies in the fact that once the
needle is inserted, the overall system (robot, needle, and tis-
sue) can be seen as a deformable robot with an infinite number
of DoFs, which cannot be controlled with standard robotic ap-
proaches. The control of soft robot is a recent research topic.
Largilliere et al. [37] proposed a more advanced control strat-
egy, based on FE models to deform a soft robot. An inverse
problem based on a quadratic-programming algorithm is used
to solve the equations of motion and control a soft-robot in real-
time. However, interactions between deformable structures with
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complex behaviors, such as nonlinear friction, are not taken into
account.

E. Nonrigid Registration of FE Models

The use of biomechanical models in the operating room is
a dynamic research topic. Recent works aimed at introducing
biomechanical models for augmented reality (AR). As opposed
to image-to-image registration, biomechanical models provide a
physics-based extrapolation, not just geometric, in areas where
few or no intraoperative data are available (see [38] for a detailed
discussion). Marami et al. [39] presented a method for nonrigid
3-D to 3-D and 3-D to 2-D registration of medical images. The
registration technique employs a dynamic linear elastic model
of the tissue to dynamically track a target inside breast tissue
during a biopsy. In [40], a biomechanical model of the heart
is controlled by active surface constraints created from features
extracted from a stereo-vision camera. The method allows for
accurate estimation of the position of internal structures, but is
limited to cyclic movements.

Suwelack et al. [41] proposed an electrostatic-elastic prob-
lem formulation for the registration of a physically-based model
derived from preoperative mesh and intraoperative surface com-
puted from a stereo laparoscopic camera. However, the method
requires that at least 50% of the organ surface is captured by
the camera, which is generally not possible. Plantefève et al.
[42] exploited salient anatomical features, identifiable in both
preoperative and intraoperative images of the liver. The method
was used to display with AR internal structures of the preop-
erative scan on top of the intraoperative view obtained from a
laparoscopic camera. A 2-D dynamic MRI has been used in
[43] for the registration of a pig’s liver during breathing mo-
tion. The method provides the complete 3-D motion of the
organ from a single 2-D dynamic MRI slice and a preopera-
tive scan. Finally, Morin et al. [44] developed an approach to
compensate for craniotomy-induced brain-shift. A biomechan-
ical simulation, relying on a nonlinear constitutive law, is con-
strained to register vessels extracted from preoperative MR and
intraoperative Doppler US.

F. Contribution and Positioning

This paper is an extension of the method introduced in [45],
which only provides validation in a simulated environment. We
show that our control strategy, based on inverse FE simulations,
allows the control of a real robotic system in order to automati-
cally steer a flexible needle in a deformable structure. The main
motivation of this paper comes from the fact that FE simulators
are now considered as a clinically relevant tool for both training
and assistance during surgery with AR. We show that a sufficient
knowledge can be extracted from FE models in order to guide
the needle and reach a target in a deformable environment.

Problem statement: Our goal is to insert a flexible needle
in a deformable environment (see Fig. 2). A polyurethane foam
model was chosen for its low-friction property during the needle
insertion (comparable to an organ), but the method is indepen-
dent of the inserted media. A trajectory is manually defined
based on a tomographic reconstruction (CT) of the foam, in an
undeformed configuration (see Fig. 2). A flexible needle is at-
tached to the end-effector of an articulated robot considered as
being infinitely rigid. The foam is attached to a support, posi-
tioned within the working space of the robot, and it is considered

Fig. 2. Needle insertion inside a deformable environment. (a) Curved trajec-
tory is defined (dashed-line) to avoid an obstacle (gray circle). (b) Since the
needle is stiffer than the foam, it is necessary to deform the foam (with tangen-
tial motion of the needle’s base) in order to deform the trajectory to a straight
line aligned with the needle’s shaft.

to be deformable. The goal of this paper is to provide Cartesian
displacements of the base of the robot such that the tip of the
needle remains on the predefined trajectory for any occurring
deformation. It is important to note that an inverse problem must
be solved to perform this insertion. Indeed, although the trajec-
tory is completely defined at the initial step, it will deform as the
insertion proceeds. Once the needle is inserted inside the vol-
ume, any displacement of the base of the robot will modify the
desired trajectory, and the input displacement command must
be adapted accordingly.

We underline that our goal is neither to provide an optimal
trajectory nor to enforce the feasibility of the trajectory. Instead,
we assume the trajectory being generated by a planning system
taking into account mechanical effects, such as [30], or given by
an expert (surgeon). If the input trajectory is not reachable, we
expect the robotic system to stop falling in a local minimum. In
addition, the nonrigid registration of FE models with live images
remains an open research problem. In order to focus on robotic
aspects, in this paper, we voluntarily simplified this step relying
on optical markers placed on the surface of the foam. In the rest
of the paper, we assume that a sparse set of 3-D observation
points m located of foam’s surface are visible from an external
tracking system. This solution has recently been used for AR
of open liver surgery [46]. The accuracy of the registration step
is not detailed in this paper (see [38], [44], and [46] for more
information).

The rest of this paper is organized as follows. In Section III,
we describe the forward biomechanical models of the needle,
the foam, and the interactions as well as the integration and
solving process. Section IV is dedicated to the inverse steps,
and the computation of input commands of the robot. Section V
concludes this paper.

III. FE MODELS

In this section, we introduce FE formulations and interaction
models and we will describe the governing equations of the
simulation.

A. FE Models

The model of the needle is based on the Timoshenko for-
mulation [47], which relies on beam’s theory. The needle is
described as a set of linked beams, each beam being composed
of two nodes and each node having 6 DoFs (position and rota-
tion). The local stiffness matrix Kne is assembled as follows:

Kne =
∫
Vne

(
CT
ne Dne Cne dVne

)
(1)
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where Cne is the strain–displacement matrix and Dne is the
stress–strain matrix. Kne is a 12 × 12 matrix.

The geometry of the mesh is obtained from a segmentation of
the foam performed before the insertion. The volume is meshed
with linear tetrahedral elements, where each element has fours
nodes with 3 DoFs. The local stiffness matrix of each element
(tetrahedral) can be written as

Kve =
∫
Vv e

(
CT
ve Dve Cve dVve

)
(2)

where Cve and Dve are, respectively, the strain–displacement
matrix and the stress–strain matrix. Kve is the 12 × 12 ma-
trix, see [48] for further details about the computation of each
component.

The computation of the global stiffness matrix of both tis-
sue and needle are based on the co-rotational formulation [49],
which allows for large displacements (but is restricted to small
stresses). Let us note

Rve =

⎡
⎢⎣

Rve∗
Rve∗

Rve∗
Rve∗

⎤
⎥⎦ ;

Rne =

⎡
⎢⎣

Rne1
Rne1

Rne2
Rne2

⎤
⎥⎦ . (3)

Rve is a block-diagonal rotation matrix of a tetrahedral el-
ement e. The 3× 3 rotation matrix Rve∗ is obtained from a
polar decomposition of the nodal positions of the tetrahedron as
proposed in [48]. Rne is a rotation matrix of a beam element e,
and Rne1 and Rne2 are the nodal rotations of beam’s nodes.

Based on the abovementioned definitions, the co-rotational
elastic forces of an element (tetrahedral or beam) can be written
with the synthetic formulation as

fe = ReKe

(
RT
e p̄e − pe

)
(4)

where indices n and v (denoting needle and volume) have been
omitted for the sake of simplicity. Ke is the local stiffness matrix
of an element e, and p̄ and p are, respectively, the deformed and
the initial vector of positions of element (tetrahedral or beam).
Re are the rotation matrices described above.

B. Time Integration and Constraint-Based Simulation

The governing equation is given by the following static for-
mulation, where Lagrangian multipliers are used to impose
constraints:

F(u) + H(pn ,pv ,X ,m)λ = 0, with u =
(

pn
pv

)
(5)

where F is a nonlinear function providing the internal forces
of the needle and the tissue. pn and pv are, respectively, the
positions of needle’s and foam’s models. λ is the vector of
Lagrange multipliers, representing the unknown response
forces. X is the position of the tool of the robot, and m are
the positions of the observation used for the registrations step.
In addition, (5) must satisfy a set of constraints H, which math-
ematically can be represented as a nonlinear function as

H(pn ,pv ,X ,m) = δ (6)

where δ are violations of constraints that must be satisfied for
each simulation step.

The nonlinear problem (5) is solved using a single iteration
Newton–Raphson solver. This choice is motivated by the fact
that only small deformations are simulated between two con-
secutive simulation steps. Therefore, after several simulation
steps an equilibrium state (i.e., when Δpn = pi+1

n − pin = 0
and Δpv = pi+1

v − piv = 0) provides pn ,pv , and λ being the
actual solutions of the nonlinear problem formulated in (5).

The linearized equation is given by

−F(ui) −
(
∂F
∂u

∣∣∣∣
u i

+
∂H
∂u

∣∣∣∣
u i

λi
)

Δu

= H(pin ,p
i
v ,X i ,mi)λi

+
(
∂H
∂λ

∣∣∣∣
λi

λi + H(pn ,pv ,X ,m)
)

Δλ. (7)

At the beginning of each simulation step i, we assume that
all constraints are solved, i.e., no constraint forces are applied
to the FE models (λi = 0). Then one can rewrite (7) as

∂F
∂u

∣∣∣∣
u i

Δu + H(pn ,pv ,X ,m)Δλ = −F(ui). (8)

The linearization of the constraint laws (6) gives

∂H
∂u

∣∣∣∣
u i

Δu = δi+1 − δi (9)

where δi = 0. In order to simplify the constraint problem, the
directions of constraints equations are assumed to be constant
during the entire integration step, which can be written as

∂H
∂u

∣∣∣∣
u i

� H and H(pn ,pv ,X ,m) � HT (10)

where H is the so-called Jacobian of the constraints (see [50]
for details). For the sake of simplicity superscript i will now be
omitted.

In a static scenario, stiffness matrices are not invertible be-
cause no boundary conditions are applied to the models. An
artificial stiffness is added in order to regularize the problem,
which corresponds to a damped Newton–Raphson method as

Av =
∂F
∂pv

∣∣∣∣
p i
v

= Mv + Kv

An =
∂F
∂pn

∣∣∣∣
p i
n

= Mn + Kn

Ki
v =

∑ (
GveRi

veK
i
veR

i
ve
T
GT
ve

)

Ki
n =

∑ (
GneRi

neK
i
neR

i
ne

T
GT
ne

)
(11)

where Ki
v and Ki

n are global stiffness matrices of, respectively,
the volume and the needle. Gve and Gne are the globalization
matrices transferring local stiffness Ki

ve and Ki
ne to global stiff-

ness matrices. Mn and Mv are diagonal regularization matrices
with nonnull values (equal to kn and kv ) for each line/column
corresponding to a constrained DoF (i.e., indices of the base
of the needle for Mn and indices of the nodes of tetrahedrons
embedding a marker for Mv ). kn and kv must be chosen suffi-
ciently high to regularize the problem, we choose a value corre-
sponding to an estimated mass of each model. However, these
regularization terms does not modify the converged solution be-
cause displacements are then imposed on each DoF impacted
by these matrices (see below). Finally, due to the variation of
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Fig. 3. Constraints applied during the needle insertion simulation. Yellow
arrows are bilateral constraints. Red arrows are friction constraints. white arrow
is a unilateral constraint. (a) Hχ (pn ,X ). (b) Hφ (pn ,pv ). (c) Hψ (pn ,pv ).

rotation matrices Rne and Rve , matrices Av and An are not
constant and must be recomputed for each simulation step.

C. Constraint Definition

The following four types of constraints are applied to the
models for each forward simulation step.

1) Bilateral constraintsHχ(pn ,X ) are used to fix the position
of the needle’s base to the terminal part of the robot see Fig. 3(a).
Hχ is a holonomic 6-DoF constraints (position and orientation)
whose violation is defined as the relative displacement between
the needle’s base and X the position of the end effector located
on the terminal part of the robot. Since the robot is infinitely
rigid, only the needle is affected by Hχ .

2) Penetration constraint Hφ(pn ,pv ) is applied before pene-
trating the tissue, between the needle’s tip and its closest surface
on the foam’s model, see Fig. 3(b). Hφ is a 3-Dof constraint:
a unilateral contact force is applied along the normal of the
triangular surface to avoid the penetration, whereas Coulomb
friction is added in the tangential direction (see [51] for details).
This constraint satisfies the Signorini conditions λ ⊥ δ, i.e., if
objects are distant (δ > 0) any contact force vanishes (λ = 0),
otherwise a positive contact force (λ > 0) is applied to cancel
the penetration (δ = 0). Hφ is parametrized by: pf , the punc-
ture force threshold and μs the friction coefficient of the surface.
Objects are considered to be in contact (leading to a deforma-
tion) since λ < pf , else Hφ is changed for a sliding constraint
(see Fig. 3).

3) Sliding constraints Hψ (pn ,pv ) enforces the shaft of the
needle to follow the path created by advancing the needle tip
[see Fig. 3(c)]. Hψ is a set of 3-DoF constraints: the first compo-
nent of each constraint applies a resistance to penetration along
the needle’s shaft, whereas the two other components prevent
displacements in the tangential plane. Constraints are dynami-
cally added during the simulation while the needle is inserted.
Each constraint is defined by its barycentric coordinates with
respect to the tetrahedral mesh, allowing this way their defini-
tion at arbitrary location within the volume, without any need
for expensive remeshing. Hψ has two additional parameters,
0 ≤ μn ≤ 1 (0 no friction, 1 sticking), being the penetration re-
sistance coefficient along the shaft and dn the minimum distance
between constraints.

4) Observation constraint HΩ(pv ,m) HΩ is a set of 3-DoF
bilateral constraints used to register the model of the foam with
respect to the observations (see Fig. 4). These constraints are
applied between observation points m given by an external
tracking system and a set of 3-D points on model’s surface m
segmented during the meshing step. An iterative closest point

Fig. 4. Constraints HΩ applied to register the deformable model according to
observation points in two different views. Arrows are bilateral constraints.

algorithm is used to bind each point of m with its respective
closest point in m.

We gather Hχ(pn ,X ), Hφ(pn ,pv ), Hψ (pn ,pv ), and HΩ
(pv ,m), functions defined above, in the same nonlinear function
H(pn ,pv ,X ,m) introduced in (6). After the liearization, the
Jacobian of the constraints is defined as follows:

Hn =
[
∂Hχ

∂pn
;
∂Hφ

∂pn
;
∂Hψ

∂pn
;
∂HΩ

∂pn

]

Hv =
[
∂Hχ

∂pv
;
∂Hφ

∂pv
;
∂Hψ

∂pv
;
∂HΩ

∂pv

]
.

(12)

It is important to note that thanks to the simplification in-
troduced in (10), H can be computed only once based on the
position of the models pin ,p

i
v ,X i ,mi at the beginning of each

simulation step i.
Combining (8) and (9) with (12) provides the following

Karush–Kuhn–Tucker (KKT) system:⎧⎪⎨
⎪⎩

Anxn + HT
n λ = bn (13)

Avxv + HT
v λ = bv (14)

Hnxn + Hvxv = δ (15)

where xn = Δpn and xv = Δpv , and bn = −Fn (pn ) and
bv = −Fv (pv ).

D. Solving Step

At each iteration step, the KKT problem is solved with the
following steps.

1) Free motion: First, we solve (13) and (14) independently
while setting λ = 0, free deformation, i.e., xfree

n = A−1
n bn and

xfree
v = A−1

v bv . We computed xfree
n and xfree

v using, respectively,
a direct solver and a preconditioned conjugate gradient (see
[52]). Replacing xfree in (13) and (14) gives{

xn = xfree
n − A−1

n HT
n λ (16)

.
xv = xfree

v − A−1
v HT

v λ (17)

2) Constraint definition: At this step, we build both Hn and
Hv (see [51] for details) matrices of constraint directions, as
described in Section III-C. In order to simplify the solution
process, Hn and Hv are assumed to be constant during each
simulation step. Since xfree

n and xfree
v would be the positions of

the needle and the deformable object if any constraint force λ
was applied, the violation of constraint δ is defined based on
Hn ,Hv ,xfree

n , and xfree
v .

3) Compliance computation: Substituting (16) and (17) in
(15), we obtained the nonlinear complementarity problem
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(NLCP) as(
HnA−1

n HT
n + HvA−1

v HT
v

)
λ = Hnxfree

n + Hvxfree
v − δ.

(18)
Solving this problem requires the computation of the compliance
matrix as

W = HnA−1
n HT

n + HvA−1
v HT

v . (19)

4) Constraints solving: To solve the NLCP created by the
nonlinear interactions (frictions and contacts)

W λ = Hnxfree
n + Hvxfree

v − δ (20)

where both λ and δ are unknown, we used a modified
Gauss–Seidel algorithm (see [51] for details).

5) Corrective motion: Once λ is known, it is replaced in (13)
and (14). Thus, we computed xn and xv by inverting again An

and Av . The final position pn and pv that fulfill the contact and
friction’s laws can then be obtained by integrating xn and xv .

The most critical step to solve the abovementioned step at
a high frequency is the computation of W. Although W is a
small matrix (whose dimension is the square of the number of
constraints), its computation is the most time-consuming step
since it requires the computation of Av . In order to reach in-
teractive computations (i.e., between 50 and 100 Hz), W is
computed based on an asynchronous approximation and GPU
parallelization as described in [52].

IV. CONTROL MODELS

The integration process described in the previous section can
be written as a forward nonlinear problem S (X ,pn ,pv ,m).
For any time t, solving S provides positions p(t)

n and p(t)
v that

fulfills constraints Hχ , Hφ , Hψ , and HΩ for any position of the
robot X (t) and observation m(t) . Constraints embedded in HΩ

enforce a small displacement error of p(t)
v in the neighborhood

of the observations m(t) , which significantly decrease the sen-
sibility of the method with respect to mechanical parameters of
the volume.

The trajectory is defined as a set of connected points s whose
positions are given by a linear relation s(t) = NT p(t)

v , where N
is derived from barycentric coordinates of the trajectory with re-
spect to the tetrahedral mesh at the initial step. For any occurring
deformation, it is therefore possible to estimate the position of
the trajectory in a deformed state, even if the trajectory is virtual
and cannot be tracked by any imaging system. On the other hand,
the needle’s positions p(t)

n are entirely driven by both bilateral
constraints Hχ(pn ,X ) at the terminal part of the robot X (t) ,
and the constraints of interactions Hφ(pn ,pv ) and Hψ (pn ,pv )
with foam’s model. Therefore, our method does not explicitly
require to track the needle in live images, which is often a lim-
itation of existing methods. However, if such observations are
available, they may easily be added in the constraint equations.

A. Objective Function Definition

Let n be the position of the needle’s tip after integration, and
t be the desired point on the trajectory. t is given by a parameter
c ∈ [0..1], which allows to move t from the first to the last point
of the trajectory. An inverse problem must be solved in order to
compute the next position of the robot X (t+1) , minimizing the
distance between n(t+1) and t(t+1) .

Fig. 5. Angular objective function: θ = arccos(dot(�o,�t)) is the angle
between needle’s tip direction �t and the tangent of the target trajectory �o.

In addition, in order to anticipate the displacement of the
needle inside the volume, a function g(X ,pn ,pv ,m) is added
to cancel the angle between needle’s tip direction and the tangent
to the target trajectory θ (θ = ∂g

∂X , see Fig. 5). The objective
function E (X ,pn ,pv ,m) of the inverse problem is given by
the following:

E (X ,pn ,pv ,m) =
(

n − t
η θ

)
= 0 (21)

where η is a scalar weighting the constraint function g, ranging
from 0 to 1.

B. Inverse Kinematics Based on FE Simulation

Instead of solving the nonlinear problem (21), each simulation
step t consists of solving a linearized version of E (X (t) ,p(t)

n ,

p(t)
v ,m(t)) around the current position of the robot X (t) as

E (X (t) + dX ,p(t)
n ,p(t)

v ,m(t))

= E (X (t) ,p(t)
n ,p(t)

v ,m(t)) +
∂E
∂X dX . (22)

The use of a first-order Taylor expansion is motivated by the
fact that solution X (s) satisfying the nonlinear problem may be
far from the current position X (t) leading to potentially large
and complex deformations of structures during the displacement
of the robot. Therefore, instead of solving the nonlinear equa-
tion (21), we rather iteratively solve a linearized version of the
problem for each simulation step asynchronously (see below)
and update the solution during the displacement of the robot.

The solution of (22) requires the computation of the derivative
of E as

E (X (t) ,p(t)
n ,p(t)

v ,m(t)) +
∂E
∂X dX = 0

⇒ dX = J−1E (X (t) ,p(t)
n ,p(t)

v ,m(t))
(23)

where J = − ∂E
∂X is a 4 × 6 Jacobian matrix, which relates the

displacement of the tip of the needle and the trajectory with
respect to displacements of the base of the robot in the Cartesian
space.

A numerical derivative is performed providing each compo-
nent of the Jacobian matrix as

J[: i] =

E (X (t) ,p(t)
n ,p(t)

v ,m(t)) − E (X (t) + δXi ,p
(t)
n ,p(t)

v ,m(t))
‖ δXi ‖

(24)

where δXi is a small perturbation of the Cartesian coordinates
i of the end effector. J[: i] is the column i of the Jacobian and
E (X (t) ,p(t)

n ,p(t)
v ,m(t)) is the value of the objective function
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Fig. 6. Control loop diagram. HF: high frequency. LF: low frequency.

S(t) = S(X (t) ,p(t)
n ,p(t)

v ,mt ). E (t) = E(X (t) ,p(t)
n ,p(t)

v ,mt ).

at the beginning of the simulation step. A pseudoinverse (using
singular value decomposition) is used to compute J−1 and solve
(23).

Due to the high nonlinear nature of the problem J remains
valid for a small amount of time after time t. Indeed, the con-
straints equations defined in S significantly modify the Jacobian
(for instance adding a new penetration constraint φ between the
volume and the needle), which must be recomputed as soon as
possible.1 Yet, since six independent simulations must be per-
formed to build the entire J matrix, each requiring to solve a
direct forward problem, it raises significant restrictions on the
computation time.

C. Control Loop

In order to maintain reasonable insertion time, we propose an
asynchronous control system (see Fig. 6).

The external imaging system provides observationsm located
on the surface of the foam at a high frequency. A dedicated
thread computes at high frequency a joint-based interpolated
motion between the current position of the robot and the desired
position of the end effector X (t+1) provided by the simulation.
Since X (t+1) is defined in images’ frame coordinates, a Hand
and Eye Problem is solved (using additional observation points
m̃ attached to the tool of the robot and Umeyama’s method
[53]) at a high frequency in order to estimate the transformation
between robot’s frame coordinates and observations m̃.

While the robot is moving, the forward problem S is solved
asynchronously at a lower frequency. Each simulation step takes
as input X (t) being the position of the end effector of the robot,
and m(t) begin observations of the model at the time t. The
forward problem S provides t(t) and n(t) , used to compute the
residual of the objective function E . The inverse simulation step
is then executed to compute the Jacobian J(t) where six inde-
pendent forward simulations are performed. During these steps,
X (t) and m(t) are considered constant. Based on the Jacobian
J(t) and the error E , a new desired position of the end effector
is computed and sent to the robot’s thread asynchronously (i.e.,
before X (t+1) is reached).

1One may note that the computation of J is performed while registration

constraintsH(t)
Ω are active. This choice allows computing J without any need for

a prior knowledge of boundary conditions. On the other hand, these constraints
artificially stiffen the model in the neighborhood of observation m(t) . An
expected limitation would be an overconstrained estimation of J if the tip of the
needle is close to an observation m. However, since the trajectory is embedded
inside the volume, this is not considered in this paper.

D. Inverse Problem in the Constraint Space

The desired position X (t+1) is updated at the frequency of
the simulation. The computation of the Jacobian J is therefore
the main critical step in terms of computation time and must
be carefully optimized to maintain acceptable insertion time. In
addition, although the computations of the columns of the nu-
merical Jacobian are independent, parallelizing this task would
rise technical issues since most of the algorithms used in the
forward problem already rely on GPU to reach high frequency
computations. Instead, we propose to modify the simulation
loop (see Algorithm 1) in order to perform the computation of
inverse steps in constraint’s space.

The Delasus operatorW =
∑

HA−1HT does not depend on
any parameter that needs to be modified during the computation
of J. Indeed, the stiffness matrices A and the Jacobian of the
constraints H are both defined using positions of the models
at the beginning of the simulation step. Thus, lines 1, 3, and 4
(representing the most time-consuming tasks) can be performed
only once per simulation step. Therefore, inverse steps used to
compute J (lines 8–14) only requires to do the following:

1) compute a new violation of the constraint δi for perturba-
tions δX i (see line 9);

2) solve the constraint problem providing Lagrangian’s mul-
tipliers λi (see line 10);

3) project back λi in the motion space (see line 11).
All these steps can be efficiently performed at an interactive

frequency since W is a small matrix with much less number
of DoFs than in motion’s space. Additional operation must be
introduced in order to store and reload states of models during
the computation of the Jacobian. Finally, lines 15–18 solve the
forward problem in order to minimize the distance between the
needle’s tip and the target.

V. EXPERIMENTAL RESULTS

We validated our approach using the experimental setup
shown in Fig. 7; it includes the following:

1) optical tracking system;
2) monocular camera;
3) robotic arm with its needle holder;
4) foam and its support.
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Fig. 7. (left) Experimental setup. (Right) View from the top and front cameras.

Fig. 8. Needle support with optical markers used for the registration of the
tool.

1) Tracking system: We used an OptiTrack motion-capture
system,2 which includes both hardware and software compo-
nents for the calibration and localization of cameras. The sys-
tem is composed of six Flex13 cameras, arranged around the
working space of the robot [see Fig. 7(i)]. The tracking system
provides the 3-D positions (at high-speed sampling, i.e., at least
120 fps) of a set of markers placed at the surface of the foam.
After the calibration, the system reports back-projection errors
of 0.025 mm on average.

2) Monocular camera: We are using two monocular cameras
(Logitech webcam C920). The positions of the optical cameras
and intrinsic parameters are estimated solving the perspective-
n-point problem based on the location of 3-D positions provided
by optitrack and the 2-D coordinates manually segmented in the
images. In Fig. 7, red rectangles indicate the region of inter-
est of each camera where the calibration was performed. After
the registration step, the 2-D back-projection error of optical
markers is under 1 pixel in the whole zone of interest.

3) Foam: The foam is attached and fixed at its four corners
within the working space of the robot. The central part is free
and can be deformed both tangentially and laterally in order
to create complex 3-D deformations. The dimensions of the
foam are voluntarily long and thin [12 × 6 × 1] cm in order
to create potentially large deformations but also to minimize
errors during the nonrigid registration step (which, we recall, is
not the contribution of this paper). Yet, it also raises significant
difficulty in order to maintain needle tip within the volume of
1-cm thick including during large in-depth deformations.

4) Robot: A Mitsubishi RV1A anthropomorphic robot arm
with 6 DoFs is used. The robot includes a 3-D printed needle
support (see Fig. 8), mounted on its end effector. The CAD
model was designed to include the location of six markers al-
lowing the definition of a rigid body attached to the support.

2[Online]. Available: http://optitrack.com/

Fig. 9. (Top) real needle and the model under different loads. (Bottom) back-
projection errors (pixels) in images between the real and the virtual needle
deformation for various parameters.

These markers allow solving the hand and eye problem, pro-
viding this way the transformation between the robot’s frame
coordinates and the tracking system coordinates. The location
of the base of the needle X is known from the CAD model.

The accuracy of the system is evaluated solving a kinematic
problem in order to position the tip of the needle (assumed
rigid) at several 3-D positions given by markers. We reported
a back-projection error in the monocular cameras views of less
than 1.0 pixels, between the needle’s tip and markers, showing
consistent registration of the overall system.

A. Needle Mechanical Characterization

An important advantage of our method lies in the fact that nee-
dle positions are derived from a mechanical model and interac-
tion constraints described above, without any need for tracking
the needle in live images. Yet, it relies on mechanical parameters
that must be identified for an accurate registration of the model.
We evaluate these parameters that can be characterized offline.

We used a 21 Gauge 12 cm Sterican needle (B. BRAN
Melsungen AG). The Poisson ratio ν = 0.3 is chosen equally to
steel [54]. The needle is positioned horizontally (thanks to the
robot) with various loads attached to its tip (see Fig. 9). Sev-
eral simulations were performed varying the value of E and the
number of beam elements discretizing the model. We measured
the back-projection (in pixels) between the simulated model and
the real bent needle. We found experimentally E = 200 GPa,
which is consistent with the literature [35], and a converged
solution after 28 beams elements discretizing needle’s shaft.

B. Nonrigid Registration

Contrary to the needle, volume model parameters may not
be accurately known during the insertion (boundary conditions,
attach points, mechanical parameters, etc.). However, since we
impose displacements on the FE model (based on observations
m), it significantly decreases the sensitivity of the method with
respect to these unknowns.

The Young Modulus of the foam was evaluated at E =
1.3 kPa [55]. Fig. 10 shows the accuracy of our approach using
25 markers uniformly distributed at the surface of the foam. We
measured the Hausdorff distance between the projected contour
of the model and the outline of the foam manually segmented
in images. A mean error varying between 1 and 3 pixels is re-
ported with maximum values of 6 pixels. A sensitivity study was

http://optitrack.com/
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Fig. 10. (Top) top camera view (Down) the front camera view. Three large
deformations of the foam were manually created. After registration, the outline
of the model is projected on the image and shown in blue.

performed varying E ± 20% (which corresponds to the stan-
dard uncertainty of liver’s parameters in healthy subjects [56]),
without a significant impact on the registration accuracy.

VI. CONTROL STRATEGY AND VALIDATION

An important difficulty to evaluate our method lies in the fact
that the trajectory is virtual and only known in the undeformed
state. Therefore, there is no ground truth about the actual path
taken by the needle. In order to evaluate our method, we propose
both a synthetic and a real validation study (see Fig 11). In both
scenarios, the inverse loop provides displacements dX of the
base of the robot using the method introduced in this paper. For
the synthetic scenario, the displacement dX is sent to a numer-
ical simulation of a needle insertion (corresponding to forward
steps described in Section III). This numerical simulation is
independent from the inverse loop (and may be parametrized
differently); while a set of observations mv is sent back to the
inverse loop to perform the corrective step. For the real scenario,
the displacement dX is sent to the robot, inserting a real needle
into the foam. The 3-D position of markers mr is sent back to
the inverse loop for the corrective step.

A. Synthetic Validation and Sensitivity Analysis

Independently from mechanical parameters (Young’s Modu-
lus, Poisson’s ratio), our method relies on additional parameters
being μn ∈ [0 : 1] the friction coefficient between the foam and
the needle, dn the distance between sliding constraints. Exper-
imentally, we choose μn = 0.1, dn = 0.007 mm, and a tetra-
hedral mesh of 2592 elements. Using the same parameters in
both the virtual system and the inverse loop, we measured an
average distance of 0.75 mm (max 1.2 mm) between needle’s
and the desired trajectory for an insertion of 8 cm, which re-
mains compatible with most of clinical applications. At the end
of the insertion, a maximal Von Mises Stress of 41.509 kPa was
reported on the tetrahedral mesh, showing large deformations
during the insertion.

We modified successively each parameter in the inverse loop
(but not in the virtual simulation), in order to evaluate their
impact on the control method. The young modulus of the foam
was modifiedE ± 20% providing an average error ranging from
0.75 to 1.1 mm at the end of the insertion. This range of error
remains acceptable for clinical applications, and is mainly due

Fig. 11. Real and synthetic validation. The inverse simulation computes dis-
placements of the robot while observation points m are used to register the
models.

to the corrective step. The same conclusion was obtained for
the friction coefficient since variations of 0.4 mm have been
reported on the error for values ranging from μn ∈ [0: 0.6].
For larger values, the Jacobian obtained from the inverse loop
did not provide any displacement allowing for the insertion
(due to sticky conditions). The system falls into local minimum
without being able to move forward the needle. However, one
may note that our method did not diverge and the inserted part
of the needle remained close (below 1.1 mm) to the trajectory.
The parameter dn has a higher influence on the accuracy since
the needle can move independently of the volume between the
constraints. Varying this parameter from 5 to 40 mm provides an
average error between 0.79 and 3.4 mm. Decreasing the distance
dn improves the accuracy of the method, but overconstrained
problems may occur if dn is smaller than the element size of the
mesh.

B. Evaluation of the Accuracy During Needle Insertion

We now evaluate the accuracy of our method in a real sce-
nario. In order to define the trajectory and enforce its feasibility,
we manually inserted the needle where a metallic thread was be-
forehand slipped within the shaft. During the manual insertion,
deformations were applied on both the needle and the foam,
which created a curved path. After the insertion, the needle was
removed letting the metallic wire within the volume. A CT scan
of the foam including the metallic thread and markers were
performed and segmented to create FE meshes.

A robotic insertion was then performed to automatically fol-
low the desired path. The foam was attached at its four corners
allowing this way for vertical and lateral deformations of the in-
ternal part. Our control method was used to drive the robot and
follow the trajectory (estimated through the registration of the
models). During the insertion vertical and lateral deformations
were applied (see Fig. 12) leading to significant modification
of the undeformed trajectory, important bending of the needle
(we measured a bending of more than 30◦ at the base of the
needle at the end of the insertion), and even an off-plane shift of
approximately 2 cm between the base of the needle and the in-
sertion point. Despite these important modifications, the method
maintained the tip of the needle within the thickness of 1 cm of
the volume and followed the desired path without any human
intervention. Before the insertion, another metallic thread was
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Fig. 12. AR view at different steps of the insertion. The desired trajectory is shown in green. The model of the needle is shown in black and overlay the real needle
(gray) in the projective view. The color map on the foam shown Von Mises stress indicating the deformation of the model with respect to the initial configuration.

Fig. 13. CT scan after the robotic insertion. The desired trajectory is shown
in green and the path taken by the needle is shown in red.

placed within the shaft of the needle, allowing for error mea-
surement between manual and robotic paths (see Fig. 13). We
reported an average error along the trajectory of 1.62 mm with a
maximum error of 3.73 mm, which is acceptable for a medical
application.

C. Computation Time

Finally, the computational time and the percentage of main
simulation steps are reported in the following table (see Fig. 14).
The constraints solving step remains the most expensive task
since it must be performed seven times for the inverse loop
(six for the Jacobian estimation and one for the forward step).
Performing inverse steps in constraint space (see Section IV-D)
provides a speedup of 4.2 compared to a version where inverse
steps are performed in motion space (where all the operations are
executed seven times). The overall method provides on average
94 input commands per second.

The maximum velocity of the robot is set to 25 mm/s, resulting
in new Jacobian computation for a maximal displacement of
0.26 mm of the base of the robot, which is sufficient for a
quasi-static scenario. Finally, the total insertion time has been
performed in 6 min, which is similar to what is obtained by
other methods [57], allowing this way for clinical applications.

VII. CONCLUSION

In this paper, we proposed a new approach for an automatic
control of a robotic needle insertion in deformable environment.
Input commands were derived from an inverse FE simulations
allowing for the prediction of the behavior of deformable struc-
tures. Errors of FE models with respect to real material were
controlled thanks to a nonrigid registration performed at a high
frequency. We proposed a constraint-based formulation allow-
ing for the computation of inverse steps in constraint space

Fig. 14. Computation time and percentage of main simulation steps. FM:
Free motion; CD: Constraint definition; CC: Compliance computation; and SC:
Solve constraints.

providing this way total insertion time compatible with clinical
applications.

In order to bring the system to the operating room, the main
limitation lies in the image modality and image processing is-
sues providing reliable per-operative observation points, neces-
sary for the corrective step. We are currently considering the
possibility to combine this paper with our preliminary study
[46], where similar markers were used for AR during an open
liver surgery.
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[42] R. Plantefève, I. Peterlı́k, N. Haouchine, and S. Cotin, “Patient-specific
biomechanical modeling for guidance during minimally-invasive hepatic
surgery,” Ann. Biomed. Eng., vol. 44, pp. 139–153, 2015.

[43] R. Trivisonne, I. Peterlı́k, S. Cotin, and H. Courtecuisse, “3-D physics-
based registration of 2-D dynamic MRI data,” in Proc. MMVR, 2016,
pp. 432–438.

[44] F. Morin et al., “Brain-shift compensation using intraoperative ultra-
sound and constraint-based biomechanical simulation,” Med. Image Anal.,
vol. 40, pp. 133–153, 2017.

[45] Y. Adagolodjo, L. Goffin, M. De Mathelin, and H. Courtecuisse, “Inverse
real-time finite-element simulation for robotic control of flexible needle in-
sertion in deformable tissues,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2016, pp. 2717–2722.

[46] Y. Adagolodjo, N. Golse, V. Eric, C. Stephane, and H. Courtecuisse,
“Marker-based registration for large deformations—application to open
liver surgery,” in Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 1–6.

[47] J. S. Przemieniecki, Theory of Matrix Structural Analysis. Massachusetts,
MA, USA: Courier Corp., 1985.

[48] M. Nesme, Y. Payan, and F. Faure, “Efficient, physically plausible finite
elements,” Eurographics, Aug. 2005. [Online]. Available: http://www-
evasion.imag.fr/Publications/2005/NPF05

[49] C. A. Felippa and B. Haugen, “A unified formulation of small-strain coro-
tational finite elements: I. Theory,” Comput. Methods Appl. Mechanics
Eng., vol. 194, pp. 2285–2335, 2005.

[50] C. Duriez, “Real-time haptic simulation of medical procedures involving
deformations and device-tissue interactions,” Ph.D. dissertation, Univer-
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