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Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in
cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic
liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present
study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the
liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by mCT imaging, and at the histological and molecular
levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was
used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system
for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse
model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal
administration had no effect, by comparison to untreated control mice.
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Introduction

Hepatocellular carcinoma (HCC) represents 80–85% of the

primary malignant liver tumors and is the 3rd most common

cancer related death worldwide, with a high increase in

developed countries [1]. One of the main challenges in cancer

treatment is the targeting of the drug to the tumor to increase

the local concentration of the therapeutic agent and avoid

major side effects on healthy tissues [2]. This is addressed by

using either specifically formulated drug vehicles [2] or

targeted therapies delivered by intravenous administration.

Some cancers like early HCC can also be treated by

radiofrequency, thermal ablation or percutaneous ethanol or

acetic acid injection in the tumor [3]. Moreover, among the

recent developments in cancer treatment, viral based gene

therapy often requires an intratumoral administration [4–7].

Intratumoral injection is also frequently performed in the

preclinical steps on animal models to develop and assess the

efficacy of new therapies [8–13].

For many decades, carcinogenesis studies as well as assays in

drug therapy utilized tumor rodent models. The recent develop-

ment of medical imaging especially micro CT scanner (mCT),

allows to follow the evolution of the disease and/or the therapy at

high resolution, on the same model animal; it also make it possible

to perform preclinical drug evaluation in a non-invasive manner

on orthotopic rodent cancer models [14,15]. Additionally such

experimental procedures might avoid the intense use of animal

models.

Several types of cancer animal models are reported to study

hepatocellular carcinoma [16]: (i) genetically engineered mice

developing spontaneous tumors; (ii) chemical induction using

carcinogens; (iii) xenograft models, in which HCC cells or

tumors from human origin are injected subcutaneously or

orthotopically into the liver of immunocompromised mice; (iv)

syngeneic graft of rodent HCC cells or tumors; (iv) viral

hepatocarcinogenesis. Graft of HCC cell lines is the fastest

model as it allows tumor growth within days after implantation

[14,15].

In the present study, we characterized a hepatoma model

in immunocompetent mice, obtained by implantation

of Hep55.1C cells [17] in the liver of syngeneic C57BL/6J

mice. We demonstrated that this mouse model can be used to

assess the efficacy of drugs taking advantage of a robotized

system developed for automated, image-guided intratumoral

administration [18].
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Results

Development of a restrainer bed system for in vivo
imaging

Since most mCT scanners do not allow to perform robotized

procedures under CT guidance in real-time, we designed a

robotized-cell and a process to use pre-operative scan data to

precisely target the affected organ. However, the use of mCT

scanner analysis for further robotized investigations has to be

performed in well-defined conditions. First of all, the animal has to

be maintained anesthetized during the whole procedure. We then

modeled a dedicated bed for 4–8 week-old mice by Computer

Assisted Design (Figure 1A). This bed is composed of three

different parts: (i) the support frame of the bed that can be placed

inside the mCT scanner, lipped on the existing carbon bed for

imaging, as well as in the robotized cell for the image-guided

robotized intratumoral administration of the drug. The mouse is

maintained under gaseous anesthesia during the entire procedure;

(ii) the hemi-cylindrical mouse restrainer that is plugged and

screwed in the support frame, firmly restraining the animal in a

comfortable position on its back (Figure 1B) to expose the

abdomen of the mouse. A sterile operative field stuck on the

shaved abdomen ensures that the mouse does not slide during the

transfer from the scanner to the robotized cell. In addition, tensing

the skin and compressing the abdomen facilitates the penetration

of the needle during the robotized insertion step; (iii) the

removable registration cover [18,19] screwed on the support

frame, overlaps the mouse on the restrainer part (Figure 1C)

during the imaging recording after which it will be removed prior

to the needle insertion. A needle insertion system was developed

[18], keeping into account the size of the animal, the skin elasticity

and the internal organ displacement. A particular attention was

paid to the choice of the needle, which length, diameter, and bevel

must be compatible with either drug injection or biopsy. Except

for the final injection, all the steps are automated, from the

positioning outside the animal, to the insertion in the animal.

Hepp55.1C cells induce fast growing orthotopic HCC
In parallel, to develop a HCC tumor model that would be

accepted by immune competent mice, Hep55.1C and Hepa1.6

rodent HCC cell lines [17,20] were screened for their sensitivity to

human standard therapeutic drugs for HCC and their tumorige-

nicity. We observed that Hep55.1C cells were more sensitive to

Doxorubicin and Sorafenib than Hepa1.6 cells: IC50 values for

Doxorubicin being around 0.10 mg/ml for Hep55.1C and

0.20 mg/ml for Hepa1.6, and in the range 6.6–10 mg/ml and

10–12.5 mg/ml respectively for Sorafenib (Figure 2A and 2B).

Interestingly, Hep55.1C cells were found to be much more

tumorigenic than Hepa1.6 cells, as all mice injected subcutane-

ously with Hep55.1C cells developed tumors, whereas Hepa1.6

tumors were observed in only 15% of the mice (Figure 2C).

We next followed HCC evolution in the Hep55.1C syngeneic

orthotopic graft mouse model by recurrent mCT imaging and

histological evaluation (Figure 3). An intrahepatic HCC was

initiated by injection of 26106 Hep55.1C cells either directly into

the liver left lateral lobe or indirectly via the spleen. Macroscop-

ically, Hep55.1C tumors appeared either as a white large nodule

or as multiple small white nodules under liver capsule (Figure S1A

and S1B). By micro CT imaging, contrast enhancement of the

liver allowed a clear identification of the tumor nodules (TN) that

remained hypo dense by comparison to normal contrast-enhanced

liver (Figure S1C and S1D).

We focused on the intrahepatic graft model that developed

single, well localized tumor nodules identified by mCT imaging,

and more adapted to evaluate drug. The small nodule (initiated by

the Hep55.1C cells) visualized at 2 weeks (in green on Figure 3A),

expended progressively in the lobe (Figure 3B). The 3D recon-

structions highlight the rapid increase in tumor volume from 5 to 9

weeks, rising from 2% to 40% (Figure 3B–C). Indeed, at 9 weeks,

a large nodule invaded the left lateral liver lobe as well as the

peritoneal cavity. We observed that the median survival was

around 8 weeks, concurrently with the strong increase of tumor

size (Figure S2). Similar results were also obtained by grafting

Hep55.1C cells in male mice [21].

The progression of the tumor was also followed by histological

examination. At 2 weeks after graft, Hep55.1C tumors presented

small sized cells with an increasing nuclear/cytoplasm ratio and

empty vesicles (right panel black arrows in Figure 3D) that could

correspond to vesicular steatosis, in line with positive oil red O

staining of tumor frozen section (Figure S3A). At that stage,

Hep55.1C tumor cells were highly proliferative, as depicted by a

Ki67 index of 40 (fraction of green positive nuclei in figure S3B),

comparable to the Ki67 score observed in human HCC [22]. At 5

weeks the tumor exhibited a pseudo glandular aspect similar to a

cholangiocarcinoma (Figure 3E, closed white arrows) and pre-

sented some features of non-alcoholic steatohepatitis (NASH) with

vesicular steatosis (black arrow). At 9 weeks after graft, Hep55.1C

tumors corresponded to a poorly differentiated human HCC

(Grade III/IV) with a very dense fibrotic structure, and tumor cells

with an almost invisible cytoplasm. Some glandular structures and

vessels (indicated respectively by open and closed white arrows,

Figure 3F) were observed at the periphery of the tumors. The

presence of tumor neo-angiogenesis was assessed by immunoflu-

orescence microscopy; we observed a labeling of vessels by the

specific endothelial cell marker PECAM-1/CD31 (green staining

in figure S3C). In addition, a very strong fibrosis appeared in early

and advanced Hep55-1C tumors (Figure 3E–F) as visualized by

silver and Sirius red staining for reticulin and collagen respectively

Figure 1. Mouse restrainer and robotized needle injector for
intratumoral drug administration. (A) Description of the mouse
restrainer bed. (B) View of a mouse restrained under gaseous
anesthesia. The animal is tightly fixed on a hemicylindrical shell by a
sterile operative field stuck on the abdomen. A sensor placed on the
back of the mouse monitors respiration. (C) A dedicated registration
cover is screwed on the bed frame during mCT scan imaging and
registration by structured light projection.
doi:10.1371/journal.pone.0106675.g001

Drug Evaluation in Mouse Using an Image-Guided Robotized System
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(Figure S3D and data not shown). Fibers of collagen and reticulin

were scattered throughout the tumor, invading the anarchic

Tumor cells and surrounding the pseudo glandular structures

(white arrow in figure S3D. The presence of reticulin and collagen

fibers inside the tumor is independent of animal sex, fibrosis

deposition being observed following orthotopic graft of Hep55.1C

cells in both male and female mice (data not shown).

We further investigated for the presence of fibrotic genes by

RT-qPCR on Hep55.1C tumor extract (Figure 4). We observed a

strong expression of type 1 collagen (COLA1), a major extracel-

lular matrix component by comparison to surrounding normal

liver cell extract. As collagen is mainly deposited by during fibrosis,

the overexpression of both alpha smooth muscle actin (ASMA),

and matrix metalloproteinase 3 (MMP3) genes, two activated

stellate cells (HSC) markers was noted in tumor cells extract

compared to wild type cells. Moreover, an increase in the mRNA

level of signaling molecules associated with inflammation and

hepatic stellate cell activation like interleukin-6 (IL-6), platelet

derived growth factor beta (PDGFB); transforming growth factor

beta (TGFB) was also marked by comparison to the surrounding

liver cells (Figure 4). However, no expression of fibronectin 1 (FN-

1), another extracellular matrix protein and fibrosis marker, was

observed. Interestingly, we found that Hep55.1C tumor do not

express albumin, a liver specific gene, in line with its poorly

differentiated state. On the contrary, cyclin D1 (CCND1),

implicated in cell cycle regulation and often dysregulated in

cancers, and osteopontin (SPP1) a HCC marker [23–25], were

highly expressed. The HCC specific marker alpha fetoprotein

(AFP) was also overexpressed in the tumor extract (Figure 4), but

also in the adjacent liver presumably as a consequence of liver

Figure 2. Screening of mouse hepatoma cell lines for chemical sensitivity and tumorigenicity. Hepa1.6 and Hep55.1C cells were exposed
to Doxorubicin (A) and Sorafenib (B) for 3 days and assessed for toxicity using a cell proliferation assay. Results are shown as the mean +/2 SD of
triplicates. (C) Percentage of C57BL6J mice (n = 6) with palpable tumor two weeks after subcutaneous injection of either 106 Hepa1.6 or Hep55.1C in
the back mice.
doi:10.1371/journal.pone.0106675.g002

Figure 3. Evolution of tumor after intra liver injection of
Hep55.1C cells. Evolution of liver tumor was followed by mCT scan
imaging and histology two (A, D), five (B, E) and nine (C, F) weeks after
Hep55.1C cells grafted in the liver of C57BL6/J mice. (A–C) 3D
reconstructions from representative mCT scan showing the normal liver
(red) and the tumor (green). Tumor/normal liver volume ratio (T/NL)
computed from 3D reconstruction is indicated. (D–F) H&E staining of
formalin fixed paraffin embedded tumors (black arrow: vesicle, closed
white arrow: glandular structure; open white arrow: red blood cells).
doi:10.1371/journal.pone.0106675.g003

Figure 4. Hep55.1C tumors markers. Expression of COLA1, ASMA,
MMP3, FN1 fibrosis markers, IL6, PDGFB, TGFB inflammation markers
and ALB, CCND1, SPP1, AFP cancer markers was assessed by RTqPCR
from Hep55.1C tumor and corresponding surrounding normal liver.
Relative mRNA level of each gene was normalized to the level of the
housekeeping gene 36B4. Results are expressed as the mean +/2 SEM
for at least 3 animals.
doi:10.1371/journal.pone.0106675.g004

Drug Evaluation in Mouse Using an Image-Guided Robotized System
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injury and regeneration consecutive to the graft and tumor growth

[26].

The graft of Hep55.1C cells in the syngeneic mice liver allows

the fast growth of a highly differentiated tumor, expressing fibrotic

and cancer marker genes. Pretreatment of the mice with

diethylnitrosamine for 4 weeks to induce liver fibrosis prior to

Hep55.1C cell graft did not modify tumor growth and marker

gene expression (Figure S4 and data not shown).

Robotized intratumoral injection inhibits Hep55.1C
tumor growth

Having set up and followed the evolution of HCC tumor in

mice, we evaluated the potency of intratumoral drug administra-

tion, using our system for image-guided robotized needle

positioning [18]. mCT scan imaging helps to precisely position

the needle of a disposable syringe filed with a test drug at the

center of the tumor; the needle is positioned by a robot with a

deviation lower than 0.3 mm (Figure S5 and [18]). We compared

the growth of hepatic tumors in untreated mice to mice either

treated intratumorally (IT) with Doxorubicin using our automated

positioning system, or injected intraperitoneally (IP). For intratu-

moral injection, a 29G needle was used to facilitate the insertion

while limiting damaging effects on tumors. In addition, it has been

demonstrated in previous studies that the sole intratumoral

injection of inactive compounds in rodent models of human

cancers did not inhibit tumor growth [27,28]. Thus we postulated

that a reduced tumor growth in the IT group could be attributed

to the antineoplastic effect of Doxorubicin on tumor cells.

Treatment started two weeks after Hep55.1C cell inoculation in

a liver lobe, once tumor was detected by mCT scan. In the IT

group, each of the 3 mice was subjected to robotized administra-

tion of 10 ml of Doxorubicin, at the center of the tumor. In the IP

group, the same amount of drug was injected manually in the

peritoneum at the vicinity of the tumor. Tumor volume was

determined for each mouse at each time point by 3D reconstruc-

tion from the mCT scan data (Figure 5A). Tumors resected at the

end of the experiment after 3 weeks of treatment were smaller in

the IT group than in the IP and control group. mCT scan follow

up demonstrated that IT injection of Doxorubicin decreased

tumor growing rate by comparison to untreated mice, as tumor

volume in the IT group was significantly smaller than in the

control group after 2 weeks (Figure 5B). However, no statistical

difference was observed after manual IP injection of Doxorubicin,

tumor growth being only slightly affected by drug administration

(Figure 5B). In addition, a statistical increase in apoptosis was

evidenced by TUNEL assay in the tumor injected intratumorally

with Doxorubicin by comparison to the non-treated control group

(Figure S6).

Discussion

Here we have developed a HCC tumor mouse model and an

automated image-guided system to follow the tumor evolution

overtime and evaluate the potency of anti-cancer drugs. Among all

HCC animal models, tumor cell graft is most appropriate for rapid

development of a single tumor nodule. One of the main limitations

of the tumor graft model in immune-competent animals is tumor

rejection. The Hepa1.6 cells [20] are rejected in the majority of

C57BL/6J mice [29–36], probably due to differences between cell

line and host haplotypes. On the contrary, we observed that the

Hep55.1C cell line, deriving from a C57BL/6J tumor [17], is

tumorigenic after subcutaneous, intra hepatic or intra splenic

injection, in 100% of both male and female mice. This model,

based on the Hep55.1C cells harboring a mutation in the b-

catenin pathway [17,37] represents a reproducible HCC model in

the C57BL/6J mouse strain, which has a low susceptibility to

spontaneous cancers.

At the histological level, these tumor cells resemble a poorly

differentiated human HCC, with small sized cell, a high

proliferation index, and duct like structures. A high level of

fibrosis was also evidenced in the tumor as reported for other

syngeneic or xenogeneic liver tumor models in mouse [38,39]. At

the molecular level, an increased expression of inflammatory and

pro-fibrotic genes has been observed, in line with hepatic stellate

cell activation. Recent studies demonstrated that hepatic stellate

cells not only play a major role in fibrosis, but also in liver

development, regeneration, and cancer, notably by promoting

HCC cell growth [40–42]. The Hep55.1C tumors being

vascularized, expressing some human cancer and HCC markers

like osteopontin, cyclin D1 and AFP, the model seemed suitable to

analyze the effect of anti-cancer or anti-fibrotic drugs.

Several therapies in preclinical development or evaluated in

clinical trials require intratumoral administration [4–6,43–45] that

helps to reduce toxicity on normal tissue and improve treatment

efficacy as concentration is locally increased. In rodents, one of the

Figure 5. Treatment of Hep55.1C mouse HCC model by
Doxorubicin. Mice bearing orthotopic HCC tumors were treated by
recurrent automated robotized intratumoral injection (IT, n = 3) or
manual intraperitoneal (IP, n = 3) of Doxorubicin; untreated mice (n = 3)
were used as control of tumor growth. (A) Representative 3-weeks
follow-up by mCT scan imaging and 3D reconstruction of tumor
development. Volumes of the tumors resected at the end of the
experiment were measured. (B) Tumor volume was computed at each
time point from the 3D reconstructions of the tumors in untreated (left),
IT (middle) or IP (right) injected mice (mean +/2 SEM, star (*) indicates a
difference with untreated control at the same time point with p,0.05).
doi:10.1371/journal.pone.0106675.g005
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main constraints is the small size of the tumor necessitating to

perform a laparotomy [35] for direct injection in orthotopic

tumors. We here have designed a dedicated animal restrainer bed

allowing both reproducible positioning of the animal in the mCT

scan for longitudinal follow-up, and firm animal restrainment for

accurate percutaneous needle insertion. Our image guided system

for percutaneous drug administration did not damage surrounding

tissues (see also [18,19]).

By combining mCT imaging and 3D reconstructions [15,21], we

localized and computed the volume of liver tumors after

intrahepatic or intrasplenic graft of Hep55.1C cells. As an

example, we demonstrated that the robotized intratumoral

injection of low amount of Doxorubicin, a drug used notably for

transarterial chemoembolization of HCC [46], significantly

reduced tumor growth by around 60% after 3 weeks, whereas

manual intraperitoneal administration of the same amount of drug

has no significant effect on tumor evolution.

The high accuracy of the system would also allow to perform

recurrent tumor micro biopsy to analyze on the same animal at the

molecular level, the evolution of specific markers, notably in

response to drug administration. Due to the high level of fibrosis in

the tumor, this model could also be used to test anti fibrotic drugs.

Further developments will include the reduction of the duration of

the robotized procedure for routine use on larger groups of

animal, and also the development of a microbiopsy needle to

retrieve biological samples from recurrent robotized biopsies.

Materials and Methods

Ethics statement
The project was approved by the local ethics committee

(ICOMETH), under the permit number 38.2011.01.011. All

experiments were performed under gaseous anesthesia, and

animals were euthanized by overdosage of anesthesia followed

by cervical dislocation.

Cell lines
Hep-55.1C derived from DENA induced HCC in C57BL/6J

mouse [17] was obtained from Cell Lines Service (Eppelheim,

Germany) and maintained in Dulbecco’s modified Eagle’s

medium supplemented with 4.5 g/L glucose and 10% fetal bovine

serum in a 5% CO2 humidified chamber. The Hepa1.6 cell line

derived from an HCC tumor in a C57L/J mouse [20] was

obtained from ATCC and maintained in Dulbecco’s modified

Eagle’s medium supplemented with 1 g/L glucose and 10% fetal

bovine serum in a 5% CO2 humidified chamber.

Cytotoxicity assay
24 h before treatment, 1.5 103 Hep55.1C or Hepa1.6 cells were

seeded in 96 well plates. 50–70% confluent cells were treated with

Sorafenib (Nexavar, Bayer), Doxorubicin (Adriamycin, Pfizer) or

DMSO for 72 h and MTT (Sigma-Aldrich) dissolved in DMEM

was added to the cells for 4 h. MTT formazan crystals were then

dissolved in isopropanol: HCl (10:1) containing 0.01% NP-40.

Background absorbance at 690 nm was subtracted from the

measurement at 570 nm.

Mouse Hepatoma tumor model
C57BL/6J mice (Janvier Labs, France) experiments were

realized under anesthesia, following FELASA recommendations

and local ethics committee approval. For subcutaneous tumor, 106

cells resuspended in PBS (Sigma-Aldrich) where injected subcu-

taneously in the back of anaesthetized mice. For orthotopic tumor

graft, 26106 Hep55.1C cells were injected in the left liver lateral

lobe of anaesthetized 8 week-old mice after midline laparotomy as

described in [21]. Diffuse HCC was induced after injection of

26106 Hep55.1C cells in PBS into the spleen of C57BL/6J mice

following subcostal incision under gaseous anesthesia.

Mouse Scanning procedure
MicroCT images were obtained on a micro CAT II scanner

(Imtek Inc, Siemens) at 80 kVp X-ray voltage and 500 mA anode

current under general gaseous anesthesia with isoflurane (Abbott).

Respiratory-gated images were acquired with a voxel size of

11961196119 mm, corresponding to a scanned volume of

6.166.166.1 cm to encompass the whole registration cover.

Four hours before imaging, animals were injected intraperito-

neally with 6 ml/g Fenestra LC (ART, Canada) liver contrast

agent. This polyiodinated contrast agent is taken-up specifically by

normal hepatocytes via the ApoE cell surface receptors [47,48].

Five min before mCT scan the mouse was anaesthetized, the

abdomen was shaved and disinfected. The mouse was then

positioned on the restrainer bed and fastened with a sterile sticky

operative field. A pressure pad placed on the back of the mouse

and connected to a pressure transducer served to gate mCT

imaging and needle insertion on animal respiration.

mCT images exported by the AMIRA software were processed

with VR-Render (available at http://www.ircad.fr/softwares) for

visualization and planning or with 3DVPM for tumor segmenta-

tion, 3D reconstruction and to compute tumor volume [49,50].

Histology
Excised tumors and normal liver were fixed in 10% formalin

and embedded in paraffin after dehydration in ethanol and xylene

substitute. 5 mm thick sections were stained with Eosin and

Haematoxylin for morphometric analyses. Reticulin was stained

with silver according to Gordon and Sweet [51], collagen was

stained with Sirius Red (Euromedex, France). For immunofluo-

rescence, tissue was frozen in OCT embedding medium above

liquid nitrogen. After permeabilization/fixation in 4% PFA, 0.1%

Triton X-100 in PBS, 5 mm thick cryosection were saturated with

PBS-5% BSA, and incubated with primary anti-PECAM-1 or

anti-Ki-67 (Santa Cruz Biotech) and secondary AlexaFluor 488

anti-Rabbit antibodies. Lipid vesicles were stained using Oil Red

O (Sigma-Aldrich, France) on frozen section. For apoptosis

detection, TUNEL assay was performed on paraffin sections

using the Apoptag Red in situ detection kit (Merck Millipore,

France), according to the manufacturer recommendations. Images

were acquired with an Axiophot microscope equipped with a

CDD camera (Axiocam, Carl Zeiss) and processed with Photoshop

CS4.

RT-PCR
Tumor and normal liver samples were homogenized in a Fastprep

apparatus (MP Biomedical) in Lysis Matrix B tubes (MP Biomedical)

containing lysis buffer (Sigma). RNAs were purified with the

mammalian Genelute kit from Sigma, according to the manufacturer

recommendations. 3 mg of RNA were used as template for reverse

transcription with random hexamer in the presence of 200 units of

Superscript II reverse transcriptase (Invitrogen). cDNA were analyzed

by real time quantitative PCR on a Chromo4 (Biorad), using

Quantitect mastermix (Qiagen). Primer sequences for the PCR were

as follows: 36B4: 59-GAGGTCACTGTGCCAGCTCA-39 and 59-

GAAGGTGTACTCAGTCTCCA-39; AFP: 59-GGCAAAGCCC-

TACAGACCA-39 and 59-TAAACGCCCAAAGCATCAC-39; ALB:

59-CCCTGTTGCTGAGACTTGCT-39 and 59-CTGAGGTGC-

TTTCTGGGTGT-39; ASMA: 59-GGCTGTGCTGTCCCTCT-

ATG-39 and 59-TCTCACGCTCGGCAGTAGTC-39; CCND1:
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59-AACTACCTGGACCGCTTCCT-39 and 59-GCTTGTTCT-

CATCCGCCTCT-39; COLA1: 59-TTTGGAGAGAGCATGAC-

CGA-39 and 59-AAGTTCCGGTGTGACTCGTG-39; IL-6: 59-

AGGATACCACTCCCAACAGAC-39 and 59-AGTGCATCATC-

GTTGTTCATAC-39; FN1: 59-CCACCTCGAGCCCGTTATAG-

39 and 59-GCAGAGGCTGCAGGGTAGTA-39; MMP3: 59-CAC-

GAGGAGCTAGCAGGTTA-39 and 59-TCCAACTGCGAAGA-

TCCACT-39; PDGFB: 59-CCGGTCCAGGTGAGAAAGAT-39

and 59-AATAACCCTGCCCACACTCT-39; SPP1: 59-GCTTG-

GCTTATGGACTGAGG-39 and 59-CTCTCCTGGCTCTCT-

TTGGA-39; TGFB: 59-ATTCAGCGCTCACTGCTCTT-39 and

59-ACTTCCAACCCAGGTCCTTC-39.

Robotic System Design
The robotized procedure for image-guided percutaneous

injection has been described [18]. Briefly, a specific mouse

restrainer bed (Figure 1A–C) was developed and prototyped by

stereolithography (Initial, France) in ABS-like epoxy resin (Proto-

gen 18420) to maintain the animal during the different steps of the

procedure. Animal respiration is monitored via a custom

developed software using a pressure pad placed on the back of

the animal and connected to a Unik5000 pressure transducer (GE,

France) linked to a USB multifunction I/O NI 6800 (National

Instruments, France). Following mouse imaging in the mCT scan,

the needle insertion is performed in a robotized cell according to

the trajectory defined in the mCT scan images, from the skin entry

point to the center of the tumor. The robotized system is

composed of a 6-degree of freedom (DOF) robotic arm RV-1A

(Mitsubishi), holding a needle injector and able to reproduce the

motion of a human arm with high accuracy and excellent

repeatability (+/20.02 mm). Two stereoscopic cameras (AVT

Marlin, Stemmer Imaging, France) are fixed on a tripod to

observe the mouse bed with an angle of about 55u. A grid

projector fixed on the top of the robotized cell projects structured

light on the bed as detailed in [18]. The needle injector is

composed of a high speed linear motorized stage M-663 (PI

France S.A.S) driven by a C-867 controller (PI France S.A.S). A

disposable 29G Myjector syringe (Terumo/Thermo Fisher,

France) filed with the drug is fixed on the needle injector prior

to the calibration of the system.

Non-invasive follow-up of HCC evolution and
intratumoral robotized drug administration

Nine mice bearing an orthotopic Hep55.1C hepatoma tumor

were randomly assigned to 3 groups. IP mice received every week

10 ml of a solution of Doxorubicin at 2 mg/ml intraperitoneally

under anesthesia; robotized intratumoral injection of Doxorubicin

was applied to IT mice, and untreated mice were used as control.

Tumor volume was determined every week by mCT imaging and

3D reconstruction of the tumors using 3DVPM [49]. Mean tumor

volumes and standard deviations were determined for each group

at each time point. When tumor volume reached 5% of total body

weight, as determined by mCT imaging, (assuming 1 cm3 of tumor

weights 1 g) in one mouse, the experiments was stopped, all mice

were sacrificed, and the tumors dissected.

Supporting Information

Figure S1 Orthotopic HCC development after inocula-
tion of hepatoma cells in the liver or in the spleen.
Hep55.1C cells were surgically injected either in the liver left

lateral lobe (A, C) or in the spleen (B, D) of C57BL/6J mice. (A)

Macroscopic appearance of a unique tumor nodule (TN) 6 weeks

after Hep55.1C cell inoculation in the liver (L). (B) Macroscopic

appearance of multiple sub capsular tumor nodules (TN) 6 weeks

after Hep55.1C cells injection in the spleen. (C, D) Contrast

enhanced mCT imaging was performed 6 weeks after Hep55.1C

cell inoculation. Hypodense tumor nodules (TN) in normal liver

lobes (L) and in the spleen (S) are delineated by dotted lines (scale

bar: 3 mm).

(TIF)

Figure S2 Mice survival after intrahepatic Hep55.1C
cell injection correlates with increased tumor volume
determined by mCT-scan. The evolution Hep55.1C orthotop-

ically grafted mice (n = 20) was followed over 18 weeks (black line).

Tumor volume (dashed line) was measured on a subset of animals

(n = 6) by contrast enhanced mCT scan. For ethical reasons,

animal were sacrificed when tumor size exceeded the maximal

ethical volume or when humane endpoints were reached.

(TIF)

Figure S3 Histological characterization of Hep55.1C
tumors. (A) Oil red O staining of lipid vesicles in Hep55.1c

tumor 2 weeks after graft. (B) Proliferative tumor cells evidenced

by immunofluorescent staining of the nuclear Ki-67 cell

proliferation marker (green). Nuclei were counterstained with

DAPI (blue). (C) Tumor vascularization evidenced by PECAM-1

endothelial cell marker immunofluorescent staining (green) 5

weeks after graft. (D) Silver staining of reticulin fibers in Hep55.1C

tumors demonstrating the presence of fibrosis (black arrow)

surrounding duct like structures (white arrow) 9 weeks after graft.

(TIF)

Figure S4 Fibrosis induction by diethylnitrosamine.
Fibrosis was induced in the liver of C57BL6/J mice prior to

Hep55.1C cell graft by weekly DENA injection. (A) Liver fibrosis

evidenced by increased Sirius red staining of the collagen fibers

(black arrow). (B) Western Blot demonstrates the increased

expression of ASMA following activation of Hepatic Stellate Cells

by DENA.

(TIF)

Figure S5 In vitro evaluation of image guided robotized
needle positioning. (A) Volume Rendering view from mCT

scan of the mouse restrainer bed filed with an 80%parafin:

20%solvent phantom. 22 virtual targets were defined in this

phantom (yellow sphere, only 7 targets (T1 to T7) are represented).

(B) Axial view of the needle track observed on a post-operative

mCT scan of the phantom after robotized positioning. The

distance between the targeted position (T1) and the needle tip stop

was measured to calculate the precision of the procedure. (C) Box

plot representing the positioning precision in the three dimensions

for from 3 independent experiments on 22 targets (mean: white

dash; 1st and 3rd percentile: white rectangle; min/max values:

black dashes).

(TIF)

Figure S6 Intratumoral injection of Doxorubicin in-
creases apoptosis. Apoptosis was evidenced in tumors from the

non-treated control group (A, B) and from the intratumorally

injected group (C, D) by indirect TUNEL assay. Nuclei were

counterstained with DAPI. (E) Mean positive nuclei observed per

microscope field of view at magnification 40x.

(TIF)
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